Анализ учебников по теме «Четырехугольники» в школьном курсе математики основной школы

Информация о педагогике » Изучение четырехугольников на факультативных занятиях по геометрии » Анализ учебников по теме «Четырехугольники» в школьном курсе математики основной школы

Страница 1

Понятие четырехугольник вводится в зависимости от того, как и когда введено понятие многоугольника:

в учебнике Л.С. Атанасяна четырехугольник вводится как частный вид многоугольника;

в учебнике А.В. Погорелова понятие многоугольника вводится значительно позже, поэтому дается определение, аналогичное определению треугольника: «Четырехугольником называется фигура, которая состоит из четырех точек и четырех последовательно соединяющих их отрезков. При этом никакие три из данных точек не лежат на одной прямой, а соединяющие их отрезки не должны пересекаться».

В теме «Четырехугольники» рассматриваются выпуклые и невыпуклые четырехугольники. Для более наглядного представления полезно составить следующую схему:

Основанием для классификации выпуклых четырехугольников является наличие параллельных сторон: в случае одной пары параллельных сторон из класса четырехугольников выделяется множество трапеций, в случае двух пар параллельных сторон – множество параллелограммов.

Структурно – логическая схема основных классов геометрических фигур, составляющих её, имеет вид:

При классификации всех четырехугольников за основание классификации принимается сначала взаимное расположение противоположных сторон – не параллельность или параллельность их, вследствие чего множество всех выпуклых четырехугольников разбивается на три класса:

четырехугольники, не имеющие параллельных сторон;

трапеции (одна пара параллельных сторон);

параллелограммы (две пары параллельных сторон).

За основание классификации параллелограммов принимается равенство или неравенство смежных сторон (собственно параллелограммы и ромбы), а также отсутствие или наличие прямого угла (собственно параллелограммы и прямоугольники).

В основу классификации ромбов кладется отсутствие или наличие прямого угла (собственно ромбы и квадраты).

При классификации прямоугольников за основание принимается равенство или неравенство смежных сторон (собственно прямоугольники и квадраты).

Классификация трапеции проводится сначала по длине боковых сторон (равнобокая и неравнобокая трапеции); затем неравнобокие трапеции в свою очередь разбиваются на прямоугольные и непрямоугольные.

Описанный процесс составления классификации четырехугольников, в частности выпуклых четырехугольников, в основу которого положена последовательная целенаправленная деформация каждой вновь полученной фигуры (получить сначала параллельные, а потом и равные стороны, затем прямые углы), позволяет отчетливо выяснить генетический характер образования каждого частного вида выпуклых четырехугольников. Из четырехугольника с непараллельными сторонами получаются трапеции и параллелограммы, из параллелограммов – прямоугольники и ромбы, из ромбов и прямоугольников – квадраты.

Выяснение этого генезиса – происхождения одной фигуры из другой – помогает более отчетливому восприятию самих геометрических образов, выяснению связей между ними, а в силу этого позволяет распространять свойство одной более общей фигуры, например параллелограмма, на частные виды ее, на прямоугольник, ромб и квадрат. Представим это на схеме. Такую схему полезно использовать при обучении школьников.

Во всех действующих в настоящее время пособиях осуществляется одинаковый подход во введении частных параллелограммов: прямоугольников, ромбов и квадратов. Частные виды четырехугольников рассматриваются в соответствии с условной единой методической схемой:

дается определение (через ранее изученный вид четырехугольников);

указываются элементы;

формулируются и доказываются свойства и признаки;

рассматривается задача на построение этого четырехугольника.

Квадрат в одних учебниках вводится как четырехугольник, который одновременно является прямоугольником и ромбом. В других – квадрат определяется как частный вид прямоугольника. В большинстве учебников трапеция рассматривается после параллелограмма и его частных видов. Тема имеет большие возможности для развития логического мышления.

легко выявляется логическая структура темы. Полезно использовать структурно-логические схемы;

используются формально-логические определения (через ближайший род и видовое отличие).

Определить понятие, значит перечислить его существенные свойства, а это зачастую бывает нелегко. Однако, задача упрощается, если использовать ранее изученные понятия. Сказанное обусловило способ определения понятия, называемый «через ближайший род и видовое отличие». Конструирование определения этим способом заключается в следующем:

Указывается род, в который входит определяемое понятие как вид.

Страницы: 1 2 3 4

Педагогические заметки:

Информатизация образования: плюсы и минусы
Информатизация образования имеет ряд дополнительных достоинств. В совокупности они позволяют говорить о системном влиянии информатизации на образование. Совершенствуются методы и технологии формирования содержания образования. Система образования становится более гибкой, за счет автоматизации многи ...

Профессиональное просвещение школьников педагогом дополнительного образования
Важным компонентом системы профессиональной ориентации учащихся педагогом ДО является профессиональное просвещение – «сообщение школьникам сведений о различных профессиях, их значении для народного хозяйства, потребностях в кадрах, условиях труда, требованиях, предъявляемых профессией к психофизиол ...

Средства развития выразительности детских рисунков в процессе обучения сюжетному рисованию
Содержанием сюжетного рисования является какой-либо сюжет. Ребенок изображает предметы, расположенные в пространстве, в их взаимосвязях и отношениях. Дошкольнику нужно всегда выделять композиционный центр при построение сюжетного образа — это то главное, что определяет содержания образа. Ребенка сл ...

Категории

Copyright © 2021 - All Rights Reserved - www.faireducation.ru