Изучение четырехугольников в курсе геометрии основной школы является разделом традиционным и достаточно важным во всех периодах школьного образования. В курсе геометрии 7–9-х классов данная тема является весьма актуальной, так как на рассмотренном материале, как на фундаменте, строят и изучают другие разделы геометрии: преобразование фигур, площади, многоугольники. Кроме того, изучение многогранников, площадей и объемов также базируется на этой теме.
Естественно, что учитель при подготовке к преподаванию этой темы должен четко себе представлять обобщенные цели и учебные задачи, которые ставятся при обучении теме «Четырехугольники», иметь перед собой карту изучения темы. Поэтому я предлагаю разработанный мною материал по данной теме.
Диагностируемые цели обучения теме.
Цель 1: приобретение учебной информации и установление интеллектуальных умений при изучении: а) понятий, б) теорем, в) типов задач.
Цель считается достигнутой, если ученик на уровнях:
первом |
втором |
третьем |
а) составляет схему определения понятий четырехугольника, параллелограмма, ромба, прямоугольника и квадрата с использованием учебника и набора объектов; б) создает знаковую модель теоремы с использованием учебника, карточек с пропусками; в) сравнивает решение однотипных задач 1-го уровня сложности, классифицирует эти задачи, используя помощь. |
а) самостоятельно составляет схему определения понятий различных видов четырехугольников с использованием учебника и набора объектов; б) ищет доказательство с помощью схемы поиска, составляет план доказательства; выделяет базис доказательства; в) обобщает решение однотипных задач одного типа, составляет приемы их решения с помощью подсказки. |
а) самостоятельно составляет схему определения понятий различных видов четырехугольников с использованием учебника и набора объектов; б) ищет доказательство признака параллелограмма и свойств параллелограмма, ромба и прямоугольника самостоятельно или с помощью схемы поиска, составляет блок – схему доказательства теорем; в) составляет приемы решения типов задач самостоятельно или по плану. |
Цель 2: контроль усвоения теоретических знаний при работе: а) с геометрическими понятиями; б) с теоремами; в) с типами и классами задач.
Цель считается достигнутой, если ученик на уровнях:
первом |
втором |
третьем |
а) воспроизводит схему определения понятий и формулирует определения параллелограмма, прямоугольника, ромба и квадрата; приводит их различные примеры; перечисляет признаки, выбирает из данных формулировок определения данных фигур; вставляет пропущенные в определении слова; раскрывает термин понятия; подводит объект под понятие; б) формулирует теоремы о свойствах данных фигур; заполняет пропуски в доказательстве, используя готовую схему; переходит от одной модели теоремы к другой; в) использует предписания для решения задач 1-го уровня. |
а) формулирует определение параллелограмма, прямоугольника, ромба и квадрата; подводит объект под понятие; приводит контрпримеры; выводит следствия из условия принадлежности объекта данному понятию; воспроизводит схему взаимосвязи параллелограмма, прямоугольника, ромба и квадрата; б) выполняет доказательство на своей модели; заполняет пустую готовую схему доказательства; называет базис доказательства; воспроизводит план доказательства; в) использует предписания для решения задач 2-го уровня. |
а) формулирует определение параллелограмма, прямоугольника, ромба и квадрата; устанавливает связи понятия прямоугольника, ромба с параллелограммом, квадрата с ромбом и прямоугольником; различает свойства и признаки этих понятий; указывает область применения данного понятия; воспроизводит алгоритм распознавания; составляет полный набор объектов для подведения под понятие; и др. б) описывает основную идею доказательства; указывает область применения теорем; описывает способы рассуждений на этапах «открытия», поиска доказательства теорем; в) решает задачи 3-го уровня. |
Педагогические заметки:
Понятие «воображение» в психолого-педагогической науке
По определению, данному в психологическом словаре, воображение – это универсальная человеческая способность к построению новых целостных образов действительности путем переработки содержания сложившегося практического, чувственного, интеллектуального и эмоционально-смыслового опыта. Я.Л. Коломенски ...
Методические рекомендации
по организации творческой деятельности учащихся в процессе освоения
информационных технологий
Урочная деятельность Творчество – это радость открытий, это когда в давно знакомом WORDe откроешь что-то новенькое, это когда часами бьешься над отладкой программы, которая затем поразит всех. Творческая деятельность учащихся на уроках вполне посильная задача. Причина слабого усвоения учащимся проф ...
Авторский проект образовательной программы
Практика является составной частью образовательного процесса в высших учебных заведениях культуры и искусства по специальности «Народное художественное творчество» и способствует реализации студентами приобретенных знаний, умений и навыков в практической деятельности. Программа состоит из двух разд ...