Векторные диаграммы импульсов в задачах о столкновениях частиц

Информация о педагогике » Векторные многоугольники в физических задачах » Векторные диаграммы импульсов в задачах о столкновениях частиц

Страница 2

. (2.4 6)

Легко установить связь между углами вылета в JI-системе и в Ц-системе:

, (2.4 7)

причем если при каждому значению соответствует одно значение , то при каждому значению соответствует два значения (за исключением случая ).

Перейдем к изучению столкновений частиц. Задача о неупругом столкновении двух частиц обратна задаче о распаде частицы на две, рассмотренной выше. В Ц-системе справедливо выражение (2.4 1), а величина в этом случае равна приращению внутренней энергии составной частицы, образовавшейся в результате неупругого столкновения.

Рассмотрим задачу об упругом столкновении двух частиц, при котором не изменяется их внутреннее состояние. Как известно, в JI-системе скорость центра масс двух частиц с массами и скоростями и определяется выражением:

. (2.4 8)

Скорости частиц до столкновения в Ц-системе связаны с их скоростями в JI-системе известными соотношениями

, , (2.4 9)

где . В силу закона сохранения импульса импульсы обеих частиц в Ц-системе остаются после столкновения равными по модулю и направленными в противоположные стороны, в силу закона сохранения энергии модули импульсов в Ц - системе при столкновении не меняются. Таким образом, в Ц-системе результат столкновения сводится лишь к повороту скоростей обеих частиц, причем после поворота скорости остаются направленными в противоположные стороны. Если единичный вектор выражает направление скорости первой частицы после столкновения, то в Ц-системе.

,. (2.4 10)

Чтобы вернуться к JI-системе, нужно к этим выражениям добавить скорость центра масс:

(2.4 11)

Этим исчерпываются сведения, которые можно получить из одних только законов сохранения импульса и энергии. Направление вектора зависит от условий взаимодействия частиц (от взаимного расположения во время столкновения и т.п.).

Для геометрической интерпретации результатов перейдем опять к импульсам. Из (2.4 11) получим:

(2.4 12)

где - приведенная масса частицы. Векторная диаграмма импульсов, соответствующая (2.4 12), приведена на рисунке 9. Здесь

,,.

Страницы: 1 2 3 4

Педагогические заметки:

Теория профориентации
Цели и задачи профориентации успешно реализуются в полной мере тогда, когда сам профориентация сможет опереться на развитую теорию и методологию. И не случайно: ведь в теории и методологии преломляются и проверяются понятия, идеи, взгляды, представления, формы, методы и принципы, которые позволяют ...

Соотношение педагогической науки и педагогической практики
Сегодня уже никто не подвергает сомнению научный статус педагогики. Спор перешел в плоскость соотношения науки и педагогической практики. Слишком неоднозначными оказыва­ются реальные достижения воспитателей: в одном случае они обусловлены глубокими знаниями и умелым применением пе­дагогической теор ...

Типовое разнообразие интегрированных уроков биологии и химии
В интегрированных уроках используются общие классические типы и формы преподавания. Однако имеются и некоторые отличия. Рассмотрим типы и формы интегрированных уроков. Урок формирования новых знаний Уроки формирования новых знаний конструируются в формах: урок лекция; урок-путешествие; урок-экспеди ...

Категории

Copyright © 2025 - All Rights Reserved - www.faireducation.ru