Традиционный способ решения задач кинематики и динамики в школьном курсе физики

Информация о педагогике » Векторные многоугольники в физических задачах » Традиционный способ решения задач кинематики и динамики в школьном курсе физики

Страница 1

Векторная запись многих уравнений физики более полно отображает соответствующие процессы и является более простой и компактной, поэтому она нашла свое применение в современном школьном курсе механики (пример тому - векторная форма записи законов и формул динамики). Векторная форма уравнений в сочетании с соответствующими рисунками раскрывает физическую ситуацию в задаче и предопределяет ее успешное решение. Однако, в процессе решения задач кинематики и динамики используют обычно проекции векторов (координатный способ).

В методической литературе по вузовскому курсу общей физике рекомендуется придерживаться следующего плана решения задачи кинематики:

1) рационально выбрать систему отсчета с указанием начала отсчета времени и обозначить на схематическом чертеже все кинематические характеристики движения (перемещение материальной точки за рассматриваемый промежуток времени, мгновенную скорость в конце и начале перемещения, ускорение и время);

2) записать кинематические законы движения для каждого из движущихся тел в векторной форме;

3) спроецировать векторные величины на координатные оси и проверить, является ли полученная система уравнений полной;

4) используя кинематические связи, геометрические соотношения и специальные условия, данные в задаче, составить недостающие уравнения;

5) решить полученную систему уравнений относительно неизвестных;

6) перевести все заданные величины в одну систему единиц и вычислить искомые величины;

7) проанализировать результат и проверить его размерность.

При решении задач в школьном курсе физики также приемлем данный алгоритм, причем в большинстве случаев пункт 2 опускается, и сразу записываются скалярные уравнения, включающие проекции рассматриваемых в задаче векторных величин.

Для решения задач по динамике общий алгоритм следующий:

1) выяснить, с какими телами взаимодействует движущееся тело, и, сделав схематический чертеж, заменить действие этих тел силами;

2) записать уравнение движения (второй закон Ньютона) в векторной форме;

3) спроецировать векторные величины на координатные оси (значительно облегчает решение задачи рациональный выбор расположения начала координат и направлений координатных осей);

4) если полученная система уравнений не является полной, составить недостающие уравнения, используя третий закон Ньютона, законы трения или законы кинематики;

5) решить полученную систему уравнений относительно неизвестных в общем виде и проверить размерность искомой величины;

6) сделать численные расчеты, проанализировать полученные результаты.

Если в задаче рассматривается движение нескольких тел, необходимо записать второй закон для каждого из них и учесть кинематические и динамические связи между ними (например, равенство ускорений тел, жестко связанных между собой, равенство сил действия и противодействия и т.д.).

При анализе задач и составлении уравнений, описывающих физические процессы и явления нужно хорошо знать, какие из величин, входящие в формулы физики, являются скалярными, а какие векторными.

Как видно из приведенных алгоритмов решения задач по кинематике и динамике, для вычислений чаще всего используют соответствующие уравнения в проекции на оси координат, поэтому возникает необходимость обучить учащихся преобразованию векторного уравнения в уравнения для проекций, т.е. прежде всего, выработать у них умение определять проекцию вектора на ось. Для этого полезно следующее алгоритмическое предписание:

1) изобразить вектор графически в избранном масштабе; указать на рисунке начало координат и координатную ось;

2) спроецировать на ось начальную и конечную точки вектора;

3) найти длину отрезка между проекциями этих точек на ось; если можно, выразить длину отрезка через модуль вектора;

4) обозначить наименьший угол между положительным направлением оси и направлением вектора; определить этот угол;

Страницы: 1 2

Педагогические заметки:

Основные труды по проблемам самовоспитания
Среди значительных работ по самовоспитанию я бы хотела указать труды А.И.Кочетова, который двадцать пять лет своей жизни посвятил работе над этой проблемой. В его популярной книге “Как заниматься самовоспитанием” раскрывается вся теория самовоспитания, его цели, задачи, приемы и методы работы над с ...

Понятие «качество образования», основные критерии оценки и технологии повышения качества ее
Образование - по законодательству РФ - целенаправленный процесс воспитания и обучения в интересах человека, общества, государства, сопровождающийся констатацией достижения обучающимся гражданином установленных государством образовательных уровней (образовательных цензов). Уровень общего и специальн ...

Значение педагогического творчества И.Г. Песталоцци
И.Г. Песталоцци по праву можно назвать основателем подлинно народной школы. Исходя из выдвинутых им теоретических положений, он обосновал методику обучения родному языку, считая, что речь нужно развивать планомерно и последовательно, одновременно обогащая представления детей об окружающем мире. И.Г ...

Категории

Copyright © 2025 - All Rights Reserved - www.faireducation.ru