Традиционный способ решения задач кинематики и динамики в школьном курсе физики

Информация о педагогике » Векторные многоугольники в физических задачах » Традиционный способ решения задач кинематики и динамики в школьном курсе физики

Страница 1

Векторная запись многих уравнений физики более полно отображает соответствующие процессы и является более простой и компактной, поэтому она нашла свое применение в современном школьном курсе механики (пример тому - векторная форма записи законов и формул динамики). Векторная форма уравнений в сочетании с соответствующими рисунками раскрывает физическую ситуацию в задаче и предопределяет ее успешное решение. Однако, в процессе решения задач кинематики и динамики используют обычно проекции векторов (координатный способ).

В методической литературе по вузовскому курсу общей физике рекомендуется придерживаться следующего плана решения задачи кинематики:

1) рационально выбрать систему отсчета с указанием начала отсчета времени и обозначить на схематическом чертеже все кинематические характеристики движения (перемещение материальной точки за рассматриваемый промежуток времени, мгновенную скорость в конце и начале перемещения, ускорение и время);

2) записать кинематические законы движения для каждого из движущихся тел в векторной форме;

3) спроецировать векторные величины на координатные оси и проверить, является ли полученная система уравнений полной;

4) используя кинематические связи, геометрические соотношения и специальные условия, данные в задаче, составить недостающие уравнения;

5) решить полученную систему уравнений относительно неизвестных;

6) перевести все заданные величины в одну систему единиц и вычислить искомые величины;

7) проанализировать результат и проверить его размерность.

При решении задач в школьном курсе физики также приемлем данный алгоритм, причем в большинстве случаев пункт 2 опускается, и сразу записываются скалярные уравнения, включающие проекции рассматриваемых в задаче векторных величин.

Для решения задач по динамике общий алгоритм следующий:

1) выяснить, с какими телами взаимодействует движущееся тело, и, сделав схематический чертеж, заменить действие этих тел силами;

2) записать уравнение движения (второй закон Ньютона) в векторной форме;

3) спроецировать векторные величины на координатные оси (значительно облегчает решение задачи рациональный выбор расположения начала координат и направлений координатных осей);

4) если полученная система уравнений не является полной, составить недостающие уравнения, используя третий закон Ньютона, законы трения или законы кинематики;

5) решить полученную систему уравнений относительно неизвестных в общем виде и проверить размерность искомой величины;

6) сделать численные расчеты, проанализировать полученные результаты.

Если в задаче рассматривается движение нескольких тел, необходимо записать второй закон для каждого из них и учесть кинематические и динамические связи между ними (например, равенство ускорений тел, жестко связанных между собой, равенство сил действия и противодействия и т.д.).

При анализе задач и составлении уравнений, описывающих физические процессы и явления нужно хорошо знать, какие из величин, входящие в формулы физики, являются скалярными, а какие векторными.

Как видно из приведенных алгоритмов решения задач по кинематике и динамике, для вычислений чаще всего используют соответствующие уравнения в проекции на оси координат, поэтому возникает необходимость обучить учащихся преобразованию векторного уравнения в уравнения для проекций, т.е. прежде всего, выработать у них умение определять проекцию вектора на ось. Для этого полезно следующее алгоритмическое предписание:

1) изобразить вектор графически в избранном масштабе; указать на рисунке начало координат и координатную ось;

2) спроецировать на ось начальную и конечную точки вектора;

3) найти длину отрезка между проекциями этих точек на ось; если можно, выразить длину отрезка через модуль вектора;

4) обозначить наименьший угол между положительным направлением оси и направлением вектора; определить этот угол;

Страницы: 1 2

Педагогические заметки:

Создание условий ДОУ для полноценной подготовки детей к обучению в школе
Центральной задачей подготовки детей к школе, наряду сохранением и укреплением здоровья, является обеспечение их своевременного полноценного психологического развития. Базовое звено дошкольного образования – ДОУ, модернизация которого предполагает достижение нового качества дошкольного образования: ...

Другие образовательные учреждения по подготовке кадров для органов и войск МВД России
Краснодарский университет МВД России (г. Краснодар) Астраханский филиал (г. Астрахань) (преобразован в суворовское училище МВД России) Махачкалинский филиал (Республика Дагестан, г. Махачкала, пос. Ленинкент) Новороссийский филиал (Краснодарский край, г. Новороссийск) Ставропольский филиал (г. Став ...

Особенности воспитания творческой активности детей дошкольного возраста
Правильно организованное обучение дает детям возможность самовыражения, самообучения, самоконтроля. Обучение как внешнее воздействие и учение как его внутренняя переработка ребенком находятся в тесной, динамичной взаимосвязи. Складывающиеся интересы, художественные способности выступают как предпос ...

Категории

Copyright © 2020 - All Rights Reserved - www.faireducation.ru