Психологические предпосылки использования нестандартных логических задач на уроке математики в начальной школе

Информация о педагогике » Использование логических задач на уроке математики в начальной школе » Психологические предпосылки использования нестандартных логических задач на уроке математики в начальной школе

Страница 2

В последние десятилетия особенно интенсивно рассматривались вопросы формирования интеллекта детей и возникновения у них общих представлений о действительности, времени и пространстве известным швейцарским психологом Ж. Пиаже и его сотрудниками. Некоторые его работы имеют прямое отношение к проблемам развития математического мышления ребёнка.

В одной из своих последних книг, написанной совместно с Б. Инельдер, Ж. Пиаже приводит экспериментальные данные о генезисе и формировании у детей (до 12 – 14 лет) таких элементарных логических структур, как классификация и сериация. Классификация предполагает выполнение операции включения (например, А + А' = В) и операции, ей обратной (В – А' = А). Сериация – это упорядочение предметов в систематические ряды (так, палочки разной длины можно расположить в ряд, каждый член которого больше всех предыдущих и меньше всех последующих).

Анализируя становление классификации, Ж. Пиаже и Б. Инельдер показывают, как от её исходной формы, от создания "фигурной совокупности", основанной лишь на пространственной близости объектов, дети переходят к классификации, основанной уже на отношении сходства ("нефигурные совокупности"), а затем к самой сложной форме – включению классов, обусловленному связью между объёмом и содержанием понятия. Авторы специально рассматривают вопрос о формировании классификации не только по одному, но и по двум-трём признакам, о формировании у детей умения изменять основание классификации при добавлении новых элементов.

Эти исследования преследовали вполне определённую цель – выявить закономерности формирования операторных структур ума и прежде всего такого их конституирующего свойства как обратимость, т.е. способности ума двигаться в прямом и обратном направлении. Обратимость имеет место тогда, когда "операции и действия могут развёртываться в двух направлениях, и понимание одного из этих направлений вызывает ipso facto (в силу самого факта) понимание другого".

Ж. Пиаже считает, что психологическое исследование развития арифметических и геометрических операций в сознании ребёнка (особенно тех логических операций, которые осуществляют в них предварительные условия) позволяет точно соотнести операторные структуры мышления со структурами алгебраическими, структурами порядка и топологическими.

В период от 7 до 11 лет система отношений, основанная на принципе взаимности, приводит к образованию в сознании ребёнка структуры порядка. Рассмотрим основные положения, сформулированные Ж. Пиаже, применительно к вопросам построения учебной программы. Прежде всего, исследования Ж. Пиаже показывают, что в период дошкольного и школьного детства у ребёнка формируются такие операторные структуры мышления, которые позволяют ему оценивать фундаментальные характеристики классов объектов и их отношений. Причём уже на стадии конкретных операций (с 7 – 8 лет) интеллект ребёнка приобретает свойство обратимости, что исключительно важно для понимания теоретического содержания учебных предметов, в частности математики.

Эти данные говорят о том, что традиционная психология и педагогика не учитывали в достаточной мере сложного и ёмкого характера тех стадий умственного развития ребёнка, которые связаны с периодом от 7 до 11 лет. Сам Ж. Пиаже эти операторные структуры прямо соотносит с основными математическими структурами. Он утверждает, что математическое мышление возможно лишь на основе уже сложившихся операторных структур (и при этом остаётся в тени объект этих операций). Это обстоятельство можно выразить и в такой форме: не "знакомство" с математическими объектами и усвоение способов действия с ними определяют формирование у ребёнка операторных структур ума, а предварительное образование этих структур (как "координации действий") является началом математического мышления, "выделения" математических структур.

Страницы: 1 2 3

Педагогические заметки:

Предпосылки, послужившие разработке содержания вариативной части учебной программы
В решении проблемы совершенствования системы физического воспитания детей школьного возраста первостепенное значение приобретает творческое использование прогрессивных традиций физического воспитания, выявление новых источников для пополнения и обогащения существующего состава средств физического в ...

Анализ учебников и учебных пособий
Согласно требованиям государственного стандарта по математике содержание материала, обязательного изучаемого по данной теме в курсе основной школы, должно включать: · Понятие и примеры случайных событий; · Понятия частоты события и вероятности; · Равновозможные события и подсчет их вероятности; · П ...

Психологические особенности развития речи детей дошкольного возраста
Все исследователи, изучающие проблему развития связной речи, обращаются к характеристике, которую дал ей С.Л.Рубинштейн. Именно ему принадлежит определение ситуативной и контекстной речи. Рубинштейн отмечал, что для говорящего всякая речь, передающая его мысль или желание, является связной речью (в ...

Категории

Copyright © 2020 - All Rights Reserved - www.faireducation.ru