Некоторые аспекты формирования индивидуальных образовательных траекторий в условиях вариативного образования

Информация о педагогике » Некоторые аспекты формирования индивидуальных образовательных траекторий в условиях вариативного образования

Страница 2

Основная предметная подготовка осуществляется в рамках дисциплин, включенных в состав ГОС. Числовая линия представлена дисциплинами "Теория чисел" и "Числовые системы", дисциплина "Основы дискретной математики" соответствует дискретной линии. Базой для формирования индивидуальных образовательных траекторий на данном этапе является введение, помимо инвариантной составляющей содержания, отраженной в ГОС, вариативной составляющей дополнительного материала,который позволяет студентам, заинтересовавшимся тематикой, получить более полное, расширенное представление о предмете. Основную смысловую нагрузку несут в этом случае задачи для самостоятельного решения, в которых "спрятана" новая, в том числе и теоретическая, информация.

Углубленная подготовка осуществляется в рамках спецкурсов и спецсеминаров. На данном этапе студент получает возможность систематизировать, углубить и расширить знания в интересующей его области математики, при желании получить исследовательскую задачу, в перспективе продолжить научную работу, обучаясь в аспирантуре. Примерами "числовых" могут служить спецкурсы "Асимптотический закон распределения простых чисел", "Простые числа в арифметических прогрессиях", "Целые точки". Выражением дискретной линии являются спецкурсы "Графы и комбинаторика", "Конечные суммы", "Рекуррентные соотношения и специальные числа".

Заключительным этапом фундаментальной подготовки в вузе является предметно-методическая подготовка, под которой мы понимаем изучение (на старших курсах или в магистратуре) математических дисциплин с "профессиональной" точки зрения, то есть с акцентом на демонстрацию связей со школьным курсом математики. Примерами таких курсов являются спецкурсы для магистрантов "Специальные числа натурального ряда", "Комбинаторика и анализ".

Индивидуальная исследовательская работа студента над курсовыми проектами и выпускными квалификационными работами бакалавра является естественной составной частью углубленной подготовки, в то время как работа над магистерской диссертацией или дипломной работой является основной частью предметнометодической подготовки. На наш взгляд, эта работа составляет основу формирования индивидуальной траектории обучения, поскольку при правильной расстановке акцентов именно она выполняет системообразующую, интегрирующую роль. При этом выбор тематики исследования должен осуществляться таким образом, чтобы работа над темой была непрерывной: студент выполняет курсовую работу как базу для дальнейшего исследования в рамках выпускной квалификационной работы бакалавра, а затем эти материалы служат математической основой магистерской диссертации, которая, в свою очередь, направлена на методическую разработку того или иного вопроса школьной математики.

Для реализации "обратной связи" необходимо, чтобы тема исследования была естественным образом связана со школьным курсом математики, проецировалась на него: в рамках подготовки магистерской диссертации студент получает возможность реализовать накопленный потенциал фундаментальных знаний в процессе создания научно-методических и программных разработок, которые могут быть положены в основу создания системы элективных курсов по математике для современной профильной школы. Так как именно магистратура педвузов должна стать в ближайшем будущем главным источником специалистов высшей квалификации для профильной школы, привлечение студентов-магистрантов к решению вопросов такого рода кажется особенно полезным.

Выбранные нами содержательные линии числа и дискретности как нельзя лучше соответствуют предъявляемым требованиям. Так, специфика арифметических проблем (простота формулировок, непосредственная связь с элементарной, "школьной" математикой, глубокие исторические корни в сочетании с разнообразием и сложностью доказательств, опирающихся на фундаментальные утверждения современной математической науки) (позволяет утверждать, что именно теоретико-числовые задачи являются одним из наиболее продуктивных источников новых направлений исследований). В свою очередь, среди арифметических вопросов можно особо выделить тематику, связанную с изучением и систематизацией свойств тех или иных чисел, например, "специальных натуральных чисел" (фигурные числа, Пифагоровы и Героновы тройки, совершенные и дружественные числа, магические квадраты, числа Фибоначчи, треугольник Паскаля, числа Мерсенна, числа Ферма, числа Стирлинга, числа Белла, числа Каталана).

Страницы: 1 2 3

Педагогические заметки:

Формы обучения
В литературе по педагогике часто путают понятия метода и формы обучения. Дадим следующие определения: Форма - характер ориентации деятельности. В основе формы лежит ведущий метод. Метод - (от греч. metodos – буквально: путь к чему-либо) – это упорядоченная деятельность педагога и учащихся, направле ...

Изменения показателей физической подготовленности школьников 5-6 классов
Результаты тестирования юношей и девушек 5-6 классов, занимающихся физической культурой по разработанной (экспериментальная группа) и обычной (контрольная группа) программе приведены в 1, 2, 4 и 5 таблицах. Из представленных данных следует, что исходный уровень физической подготовленности примерно ...

Достоинства и недостатки тестирования
тестовый контроль учащийся Одним из недостатков тестового метода контроля знаний студентов является то, что создание тестов, их унификация и анализ - это большая кропотливая работа. Чтобы довести тест до полной готовности к применению необходимо несколько лет собирать статистические данные, хотя бы ...

Категории

Copyright © 2023 - All Rights Reserved - www.faireducation.ru