Некоторые аспекты формирования индивидуальных образовательных траекторий в условиях вариативного образования

Информация о педагогике » Некоторые аспекты формирования индивидуальных образовательных траекторий в условиях вариативного образования

Страница 2

Основная предметная подготовка осуществляется в рамках дисциплин, включенных в состав ГОС. Числовая линия представлена дисциплинами "Теория чисел" и "Числовые системы", дисциплина "Основы дискретной математики" соответствует дискретной линии. Базой для формирования индивидуальных образовательных траекторий на данном этапе является введение, помимо инвариантной составляющей содержания, отраженной в ГОС, вариативной составляющей дополнительного материала,который позволяет студентам, заинтересовавшимся тематикой, получить более полное, расширенное представление о предмете. Основную смысловую нагрузку несут в этом случае задачи для самостоятельного решения, в которых "спрятана" новая, в том числе и теоретическая, информация.

Углубленная подготовка осуществляется в рамках спецкурсов и спецсеминаров. На данном этапе студент получает возможность систематизировать, углубить и расширить знания в интересующей его области математики, при желании получить исследовательскую задачу, в перспективе продолжить научную работу, обучаясь в аспирантуре. Примерами "числовых" могут служить спецкурсы "Асимптотический закон распределения простых чисел", "Простые числа в арифметических прогрессиях", "Целые точки". Выражением дискретной линии являются спецкурсы "Графы и комбинаторика", "Конечные суммы", "Рекуррентные соотношения и специальные числа".

Заключительным этапом фундаментальной подготовки в вузе является предметно-методическая подготовка, под которой мы понимаем изучение (на старших курсах или в магистратуре) математических дисциплин с "профессиональной" точки зрения, то есть с акцентом на демонстрацию связей со школьным курсом математики. Примерами таких курсов являются спецкурсы для магистрантов "Специальные числа натурального ряда", "Комбинаторика и анализ".

Индивидуальная исследовательская работа студента над курсовыми проектами и выпускными квалификационными работами бакалавра является естественной составной частью углубленной подготовки, в то время как работа над магистерской диссертацией или дипломной работой является основной частью предметнометодической подготовки. На наш взгляд, эта работа составляет основу формирования индивидуальной траектории обучения, поскольку при правильной расстановке акцентов именно она выполняет системообразующую, интегрирующую роль. При этом выбор тематики исследования должен осуществляться таким образом, чтобы работа над темой была непрерывной: студент выполняет курсовую работу как базу для дальнейшего исследования в рамках выпускной квалификационной работы бакалавра, а затем эти материалы служат математической основой магистерской диссертации, которая, в свою очередь, направлена на методическую разработку того или иного вопроса школьной математики.

Для реализации "обратной связи" необходимо, чтобы тема исследования была естественным образом связана со школьным курсом математики, проецировалась на него: в рамках подготовки магистерской диссертации студент получает возможность реализовать накопленный потенциал фундаментальных знаний в процессе создания научно-методических и программных разработок, которые могут быть положены в основу создания системы элективных курсов по математике для современной профильной школы. Так как именно магистратура педвузов должна стать в ближайшем будущем главным источником специалистов высшей квалификации для профильной школы, привлечение студентов-магистрантов к решению вопросов такого рода кажется особенно полезным.

Выбранные нами содержательные линии числа и дискретности как нельзя лучше соответствуют предъявляемым требованиям. Так, специфика арифметических проблем (простота формулировок, непосредственная связь с элементарной, "школьной" математикой, глубокие исторические корни в сочетании с разнообразием и сложностью доказательств, опирающихся на фундаментальные утверждения современной математической науки) (позволяет утверждать, что именно теоретико-числовые задачи являются одним из наиболее продуктивных источников новых направлений исследований). В свою очередь, среди арифметических вопросов можно особо выделить тематику, связанную с изучением и систематизацией свойств тех или иных чисел, например, "специальных натуральных чисел" (фигурные числа, Пифагоровы и Героновы тройки, совершенные и дружественные числа, магические квадраты, числа Фибоначчи, треугольник Паскаля, числа Мерсенна, числа Ферма, числа Стирлинга, числа Белла, числа Каталана).

Страницы: 1 2 3

Педагогические заметки:

Социально-педагогические условия эффективности патриотического воспитания
Любая педагогическая система должна соответствовать условиям, в которых она функционирует. По мнению А.С. Макаренко, "никакое средство педагогическое, даже общепринятое… не может быть признано всегда абсолютно полезным. Самое хорошее средство в некоторых случаях будет самым плохим". Поэто ...

Предпосылки, послужившие разработке содержания вариативной части учебной программы
В решении проблемы совершенствования системы физического воспитания детей школьного возраста первостепенное значение приобретает творческое использование прогрессивных традиций физического воспитания, выявление новых источников для пополнения и обогащения существующего состава средств физического в ...

Компетентностный подход в странах Евросоюза и США
В мировой образовательной практике компетентность выступает в качестве центрального понятия, так как: объединяет интеллектуальную и навыковую составляющие образования; включает интерпретацию содержания образования, формируемого «от результата» («стандарт на выходе»); обладает интегративной природой ...

Категории

Copyright © 2020 - All Rights Reserved - www.faireducation.ru